Met a girl in the parking lot And all I did was say hello Her pepper spray made it rather hard For me to walk her home But I guess that's the way it goes Tell me again was it love at first sight When I walked by and you caught my eye Wouldn't you know love could shine this bright Well smile because you're the deer in the headlights Met a girl with a graceful charm But when beauty met the beast he froze Got the sense I was not her type By black eye and bloody nose But I guess that's the way it goes Tell me again was it love at first sight When I walked by and you caught my eye Wouldn't you know love could shine this bright Well smile because you're the deer in the headlights It's suffocating to say, but the female mystique take my breath away So give me a smile or give me a sneer Cause i'm trying to guess here Tell me again was it love at first sight When I walked by and you caught my eye Wouldn't you know love could shine this bright Well smile because you're the deer in the headlights Tell me again was it love at first sight When I walked by and you caught my eye Wouldn't you know love could shine this bright If life was a game you would never play nice If love was a beam you'd be blind in both eyes Put your sunglasses 'cause you are the deer in the headlights Well smile because you're the deer in the headlights You're the deer in the headlights You're the deer in the headlights
dodious blog. Powered by Blogger.

Wednesday, March 28, 2012

Apa itu thread dan multithread server ?

Thread adalah sebuah alur kontrol dari sebuah proses. Suatu proses yang multithreaded mengandung beberapa perbedaan alur kontrol dengan ruang alamat yang sama. Keuntungan dari multithreaded meliputi peningkatan respon dari user, pembagian sumber daya proses, ekonomis, dan kemampuan untuk mengambil keuntungan dari arsitektur multiprosesor. User level thread adalah thread yang tampak oleh programmer dan tidak diketahui oleh kernel. User level thread secara tipikal dikelola oleh sebuah library thread di ruang user. Kernel level thread didukung dan dikelola oleh kernel sistem operasi. Secara umum, user level thread lebih cepat dalam pembuatan dan pengelolaan dari pada kernel thread. Ada tiga perbedaan tipe dari model yang berhubungan dengan user dan kernel thread.
(gambar thread)

Konsep Dasar

Secara informal, proses adalah program yang sedang dieksekusi. Ada dua jenis proses, proses berat (heavyweight) atau biasa dikenal dengan proses tradisional, dan proses ringan atau kadang disebut thread.
Thread saling berbagi bagian program, bagian data dan sumber daya sistem operasi dengan thread lain yang mengacu pada proses yang sama. Thread terdiri atas ID thread, program counter, himpunan register, dan stack. Dengan banyak kontrol thread proses dapat melakukan lebih dari satu pekerjaan pada waktu yang sama.

Keuntungan

  1. Tanggap: Multithreading mengizinkan program untuk berjalan terus walau pun pada bagian program tersebut di block atau sedang dalam keadaan menjalankan operasi yang lama/ panjang. Sebagai contoh, multithread web browser dapat mengizinkan pengguna berinteraksi dengan suatu thread ketika suatu gambar sedang diload oleh thread yang lain.
  2. Pembagian sumber daya: Secara default, thread membagi memori dan sumber daya dari proses. Keuntungan dari pembagian kode adalah aplikasi mempunyai perbedaan aktifitas thread dengan alokasi memori yang sama.
  3. Ekonomis: Mengalokasikan memori dan sumber daya untuk membuat proses adalah sangat mahal. Alternatifnya, karena thread membagi sumber daya dari proses, ini lebih ekonomis untuk membuat threads.
  4. Pemberdayaan arsitektur multiprosesor: Keuntungann dari multithreading dapat ditingkatkan dengan arsitektur multiprosesor, dimana setiap thread dapat jalan secara parallel pada prosesor yang berbeda. Pada arsitektur prosesor tunggal, CPU biasanya berpindah-pindah antara setiap thread dengan cepat, sehingga terdapat ilusi paralelisme, tetapi pada kenyataannya hanya satu thread yang berjalan di setiap waktu.

Model Multithreading

Dalam sub bab sebelumnya telah dibahas pengertian dari thread, keuntungannya, tingkatan atau levelnya seperti pengguna dan kernel. Maka dalam sub-bab ini pembahasan akan dilanjutkan dengan jenis-jenis thread tersebut dan contohnya baik pada Solaris mau pun Java.
Sistem-sistem yang ada sekarang sudah banyak yang bisa mendukung untuk kedua pengguna dan kernel thread, sehingga model-model multithreading-nya pun menjadi beragam. Implementasi multithreading yang umum akan kita bahas ada tiga, yaitu model many-to-one, one-to-one, dan many-to-many.
(gambar multithreading)

Model Many to One

Model many-to-one ini memetakan beberapa tingkatan pengguna thread hanya ke satu buah kernel thread. Managemen proses thread dilakukan oleh (di ruang) pengguna, sehingga menjadi efisien, tetapi apabila sebuah thread melakukan sebuah pemblokingan terhadap sistem pemanggilan, maka seluruh proses akan berhenti (blocked). Kelemahan dari model ini adalah multihreads tidak dapat berjalan atau bekerja secara paralel di dalam multiprosesor dikarenakan hanya satu thread saja yang bisa mengakses kernel dalam suatu waktu.
(gambar model many to one)

Model One to One

Model one-to-one memetakan setiap thread pengguna ke dalam satu kernel thread. Hal ini membuat model one-to-one lebih sinkron daripada model many-to-one dengan mengizinkan thread lain untuk berjalan ketika suatu thread membuat pemblokingan terhadap sistem pemanggilan; hal ini juga mengizinkan multiple thread untuk berjalan secara parallel dalam multiprosesor. Kelemahan model ini adalah dalam pembuatan thread pengguna dibutuhkan pembuatan korespondensi thread pengguna. Karena dalam proses pembuatan kernel thread dapat mempengaruhi kinerja dari aplikasi maka kebanyakan dari implementasi model ini membatasi jumlah thread yang didukung oleh sistem. Model one-to-one diimplementasikan oleh Windows NT dan OS/2.
(model one to one)

Model Many to Many

Beberapa tingkatan thread pengguna dapat menggunakan jumlah kernel thread yang lebih kecil atau sama dengan jumlah thread pengguna. Jumlah dari kernel thread dapat dispesifikasikan untuk beberapa aplikasi dan beberapa mesin (suatu aplikasi dapat dialokasikan lebih dari beberapa kernel thread dalam multiprosesor daripada dalam uniprosesor) dimana model many-to-one mengizinkan pengembang untuk membuat thread pengguna sebanyak mungkin, konkurensi tidak dapat tercapai karena hanya satu thread yang dapat dijadualkan oleh kernel dalam satu waktu. Model one-to-one mempunyai konkurensi yang lebih tinggi, tetapi pengembang harus hati-hati untuk tidak membuat terlalu banyak thread tanpa aplikasi dan dalam kasus tertentu mungkin jumlah thread yang dapat dibuat dibatasi.
(gambar many to many)

Thread CancellationThread cancellation adalah tugas untuk memberhentikan thread sebelum ia menyelesaikan tugasnya. Sebagi contohnya jika dalam program java kita hendak mematikan JVM( Java Virtual Machine ) maka sebelum JVM-nya dimatikan maka seluruh thread yang berjalan dihentikan terlebuh dahulu. Thread yang akan diberhentikan biasa disebut target thread.
Pemberhentian target thread bisa terjadi melalui 2 cara yang berbeda :
  1. Asynchronous cancellation : suatu thread seketika itu juga memberhentikan target thread.
  2. Defered cancellation : target thread secara perodik memeriksa apakah dia harus berhenti, cara ini memperbolehkan targetthread untuk memberhentikan dirinya sendiri secara terurut.

Hal yang sulit dari pemberhentian thread ini adalah ketika terjadi situasi dimana sumber daya sudah dialokasikan untuk thread yang akan diberhentikan. Selain itu kesulitan lain adalah ketika thread yang diberhentikan sedang meng-update data yang ia bagi dengan thread lain. Hal ini akan menjadi masalah yang sulit apabila digunakan asynchronous cancellation . Sistem operasi akan mengambil kembali sumber daya dari thread yang diberhentikan tetapi seringkali sistem operasi tidak mengambil kembali semua sumber daya dari thread yang diberhentikan.
Alternatifnya adalah dengan menggunakan Deffered cancellation . Cara kerja dari deffered cancellation adalah dengan menggunakan 1 thread yang berfungsi sebagai pengindikasi bahwa target thread hendak diberhentikan. Tetapi pemberhentian hanya akan terjadi jika target thread memeriksa apakah ia harus berhenti atau tidak. Hal ini memperbolehkan thread untuk memeriksa apakah ia harus berhenti pada waktu dimana ia bisa diberhentikan secara aman yang aman. Pthread merujuk tersebut sebagai cancellation points .

Pada umumnya sistem operasi memperbolehkan proses atau thread untuk diberhentikan secara asynchronous . Tetapi Pthread API menyediakan deferred cancellation . Hal ini berarti sistem operasi yang mengimplementasikan Pthread API akan mengijinkan deferred cancellation .


Thread Pools

Pada web server yang multithreading ada 2 masalah yang timbul :
  1. Ukuran waktu yang diperlukan untuk menciptakan thread untuk melayani permintaan yang diajukan terlebih pada kenyataannya thread dibuang ketika ia seketika sesudah ia menyelesaikan tugasnya.
  2. Pembuatan thread yang tidak terbatas jumlahnya dapat menurunkan performa dari sistem.
Solusinya adalah dengan penggunaan Thread Pools, cara kerjanya adalah dengan membuat beberapa thread pada proses startup dan menempatkan mereka ke pools , dimana mereka duduk diam dan menunggu untuk bekerja. Jadi ketika server menerima permintaan maka maka ia akan membangunkan thread dari pool dan jika threadnya tersedia maka permintaan tersebut akan dilayani. Ketika thread sudah selesai mengerjakan tugasnya maka ia kembali ke pool dan menunggu pekerjaan lainnya. Bila tidak thread yang tersedia pada saat dibutuhkan maka server menunggu sampai ada 1 thread yang bebas.
Keuntungan thread pool :
  1. Biasanya lebih cepat untuk melayani permintaan dengan thread yang ada dibanding dengan menunggu thread baru dibuat.
  2. Thread pool membatasi jumlah thread yang ada pada suatu waktu. Hal ini pentingpada sistem yang tidak bisa mendukung banyak thread yang berjalan secara concurrent .

Jumlah thread dalam pool bisa tergantung dari jumlah CPU dalam sistem, jumlah memori fisik, dan jumlah permintaan klien yang concurrent .

Thread Java

Seperti yang telah kita lihat, thread didukung selain oleh sistem operasi juga oleh paket library thread. Sebagai contoh, Win32 library mempunyai API untuk multithreading aplikasi Windows, dan Pthreads mempunyai fungsi manajmen thread untuk sistem POSIX-compliant. Java adalah unik dalam mendukung tingkatan bahasa untuk membuat dan managemen thread.
Semua program java mempunyai paling sedikit satu kontrol thread. Bahkan program java yang sederhana mempunyai hanya satu main() method yang berjalan dalam thread tunggal dalam JVM. Java menyediakan perintah-perintah yang mendukung pengembang untuk membuat dan memanipulasi kontrol thread pada program.
Satu cara untuk membuat thread secara eksplisit adalah dengan membuat kelas baru yang diturunkan dari kelas thread, dan menimpa run() method dari kelas Thread tersebut.
Object yang diturunkan dari kelas tersebut akan menjalankan sebagian thread control dalam JVM. Bagaimana pun, membuat suatu objek yang diturunkan dari kelas Thread tidak secara spesifik membuat thread baru, tetapi start() method lah yang sebenarnya membuat thread baru.
Memanggil start() method untuk objek baru mengalokasikan memori dan menginisialisasikan thread baru dalam JVM dan memanggil run() method membuat thread pantas untuk dijalankan oleh JVM. (Catatan: jangan pernah memanggil run() method secara langsung. Panggil start() method dan ini secara langsung akan memanggil run() method).
Ketika program ini dijalankan, dua thread akan dibuat oleh JVM. Yang pertama dibuat adalah thread yang berasosiasi dengan aplikasi-thread tersebut mulai dieksekusi pada main() method. Thread kedua adalah runner thread secara ekspilisit dibuat dengan start() method. Runner thread memulai eksekusinya dengan run() method.
Pilihan lain untuk membuat sebuah thread yang terpisah adalah dengan mendefinisikan suatu kelas yang mengimplementasikan runnable interface. Runnable interface tersebut didefinisikan sebagai berikut:
Gambar 2-23. Runnable. Sumber: . . .

Public interface Runnable {    Public abstract void run(); }
Sehingga, ketika sebuah kelas diimplementasikan dengan runnable, kelas tersebut harus mendefinisikan run() method. Kelas thread yang berfungsi untuk mendefinisikan static dan instance method, juga mengimplementasikan runnable interface. Itu menerangkan bahwa mengapa sebuah kelas diturunkan dari thread harus mendefinisikan run() method.
Implementasi dari runnable interface sama dengan mengekstend kelas thread, satu-satunya kemungkinan untuk mengganti "extends thread" dengan "implements runnable".
Gambar 2-24. Class Worker2. Sumber: . . .

Class worker2 implements Runnable {    Public void run() {       System. Out. Println ("I am a worker thread. ");    } }
Membuat sebuah thread dari kelas yang diimplementasikan oleh runnable berbeda dengan membuat thread dari kelas yang mengekstend thread. Selama kelas baru tersebut tidak mengekstend thread, dia tidak mempunyai akses ke objek static atau instance method — seperti start() method — dari kelas thread. Bagaimana pun, sebuah objek dari kelas thread adalah tetap dibutuhkan, karena yang membuat sebuah thread baru dari kontrol adalah start() method.
Di kelas kedua, sebuah objek thread baru dibuat melalui runnable objek dalam konstruktornya. Ketika thread dibuat oleh start() method, thread baru mulai dieksekusi pada run() method dari runnable objek. Kedua method dari pembuatan thread tersebut adalah cara yang paling sering digunakan.


Thread Linux
Ketika pertama kali dikembangkan, Linux tidak didukung dengan threading di dalam kernelnya, tetapi dia mendukung proses-proses sebagai entitas yang dapat dijadwalkan melalui clone() system calls. Sekarang Linux mendukung penduplikasian proses menggunakan system call clone() dan fork(). Clone() mempunyai sifat mirip dengan fork(), kecuali dalam hal pembuatan copy dari proses yang dipanggil dimana ia membuat sebuah proses yang terpisah yang berbagi address space dengan proses yang dipanggil. Pembagian address space dari parent process memungkinkan cloned task bersifat mirip dengan thread yang terpisah. Pembagian address space ini dimungkinkan karena proses direpresentasikan di dalam Kernel Linux. Di dalam Kernel Linux setiap proses direpresentasikan sebagai sebuah struktur data yang unik. Jadi, daripada menciptakan yang baru maka struktur data yang baru mengandung pointer yang menunjuk ke tempat dimana data berada. Jadi ketika fork() dipanggil, proses yang baru akan tercipta beserta duplikasi dari segala isi di struktur data di parent process, namun ketika clone() dipanggil, ia tidak menduplikasi parent processnya tetapi menciptakan pointer ke struktur data pada parent process yang memungkinkan child process untuk berbagi memori dan sumber daya dari parent processnya. Project LinuxThread menggunakan system call ini untuk mensimulasi thread di user space. Sayangnya, pendekatan ini mempunyai beberapa kekurangan, khusunya di area signal handling, scheduling, dan interprocess synchronization primitive.
Untuk meningkatkan kemampuan Thread Linux, dukungan kernel dan penulisan ulang pustaka thread sangat diperlukan. Dua project yang saling bersaing menjawab tantangan ini. Sebuah tim yang terdiri dari pengembang dari IBM membuat NGPT (Next Generation POSIX Threads). Sementara pengembang dari Red Hat membuat NPTL (Native POSIX Thread Library).Sebenarnya Linux tidak membedakan antara proses dan thread. Dalam kenyataannya, Linux lebih menggunakan istilah task dibandingkan proses dan thread ketika merujuk kepada pengaturan alur pengontrolan di dalam program.

Sunday, March 18, 2012

Remote Procedure Call (RPC)

Remote Procedure Call (RPC) adalah sebuah metode yang memungkinkan kita untuk mengakses sebuah prosedur yang berada di komputer lain. Untuk dapat melakukan ini sebuah  server harus menyediakan layanan  remote procedure.Pendekatan yang dilakuan adalah sebuah  server membuka  socket, lalu menunggu client yang meminta prosedur yang disediakan oleh server. Bila client tidak tahu haruS menghubungi  port yang mana,  client bisa me-request kepada sebuah  matchmaker pada sebuah RPC  port yang tetap.  Matchmaker akan memberikan  port apa yang digunakan oleh prosedur yang diminta client.
RPC masih menggunakan cara primitif dalam pemrograman, yaitu menggunakan paradigma procedural programming. Hal itu membuat kita sulit ketika menyediakan banyak  remote procedure. RPC menggunakan  socket untuk berkomunikasi dengan proses lainnya. Pada sistem seperti SUN, RPC secara default sudah ter-install kedalam sistemnya, biasanya RPC  ini digunakan untuk administrasi sistem. Sehingga seorang administrator jaringan dapat mengakses sistemnya dan mengelola sistemnya dari mana saja, selama sistemnya terhubung ke jaringan.
Kelebihan RPC
  • ƒ Relatif mudah digunakan :
Pemanggilan remote procedure tidak jauh berbeda dibandingkan pemanggilan procedure.  Sehingga pemrogram              dapat berkonsentrasi pada software logic, tidak perlu memikirkan low  level details seperti  socket, marshalling &unmarshalling.
  • ƒ  Robust (Sempurna):
Sejak th 1980-an RPC telah banyak digunakan dlm pengembangan mission- critical application yg memerlukan scalability, fault tolerance, & reliability.
Kekurangan RPC


  • ƒ  Tidak fleksibel terhadap perubahan:
    Static relationship between client & server at run-time.
  • Berdasarkan prosedural/structured programming yang sudah ketinggalan jaman dibandingkan OOP.
Struktur Protokol Message RPC

  • Call Message
  • Dilakukan oleh klien, dimana meminta server untuk mengeksekusi suatu prosedur.
  • Terdapat nilai-nilai unsigned integer yang digunakan untuk mengidentifikasi prosedurremote yang diminta:
1. Nomor Program
2. Nomor Versi dari Program
3. Nomor Prosedur
  • Reply Message
  • apakah call messages yang diminta klien diterima atau ditolak.
  • Mengandung informasi:
1. RPM mengeksekusi call message dengan sukses
2. Implementasi remote tidak sesuai dengan protokol yang digunakan (versi yang lebih tinggi atau lebih rendah ditolak)
3.Program remote tidak tersedia pada sistem remote
4. Program remote tidak mendukung versi yang diminta klien
5. Nomor prosedur yang diminta tidak ada
Fitur dalam RPC
1. Batching Calls
Mengijinkan klien untuk mengirim message calls ke server dalam jumlah besar secara berurutan.
2. Broadcasting Calls
Menijinkan klien untuk mengirimkan paket data ke jaringan dan menunggu balasan dari network.
3. Callback Procedures
Mengijinkan server untuk bertindak sebagai klien dan melakukan PRC callback ke proses yang dijalankan klien.
4. Select Subrutin
Memeriksa deskripsi suatu file dan messages dalamantrian untuk melihat apakah siap dibaca atau ditulis,atau ditahan. (mengijinkan server untuk menginterupsi suatu aktivitas.
Prinsip RPC dalam program Client-Server




Skema RPC ini dilakukan juga pada proses-proses yang running di komputer  berlainan
  • ƒ Sebelum mekanisme RPC digunakan, data  harus di-packaging ke dalam formattransimisi. Langkah ini dinamakan marshalling
  • ƒProxy bertanggung jawab untuk marshalling data, kemudian mengirimkan data
    dan meminta instans dari komponen (remote)

  • ƒStub menerima request, unmarshall data, dan memanggil method yang diminta. Kemudian proses mengembalikan nilai yang diinginkan .
Langkah-langkah dalam RPC

1.  Prosedur client memanggil client stub
2.  Client stub membuat pesan dan memanggil OS client
3.  OS client mengirim pesan ke OS server
4.  OS server memberikan pesan ke server stub
5.  Server stub meng-unpack parameter-parameter untuk memanggil server
6.  Server mengerjakan operasi, dan mengembalikan hasilnya ke server stub
7.  Server stub mem-pack hasil tsb dan memanggil OS server
8.  OS server mengirim pesan (hasil) ke OS client
9.  OS client memberikan pesan tersebut ke client stub
10.  Client stub meng-unpack hasil dan mengembalikan hasil tersebut ke
client
Fitur dalam RPC
  • Batching Calls:Fitur Batching calls mengijinkan klien untuk mengirim message calls ke server dalam jumlah besar secara sequence ( berurutan )
  • Broadcasting Call:Fitur Broadcasting mengijinkan klien untuk mengirimkan paket data kejaringan dan menunggu balasan dari network. FItur ini menggunakanprotokol yang berbasiskan paket data seperti UDP/IP sebagai mediumnya.Broadcast RPC membutuhkan layanan port mapper RPC untukmengimplementasikanfung sinyA
  • Callback ProcedureS:Fitur Callback Procedures mengijinkan server untuk bertindak sebagai
  • Menggunakan select SubrutiN:Fitur ini akan memeriksa deskripsi dari suatu file dan messages dalamantrian untuk melihat apakah mereka siap untuk dibaca (diterima) atauditulis (dikirim), atau mereka dalam kondisi ditahan sementara. Prosedurini mengijinkan server untuk menginterupsi suatu aktivitas, memeriksadatanya, dan kemudian melanjutkan proses aktivitas tersebut.

Object Remote



Meskipun teknologi RPC ini relatif sudah memberikan kenyamanan bagi developer, tapi perkembangan yang terjadi di bidang pemrograman berorientasi objek akhirnya menuntut kehadiran teknologi baru. Sederet teknologi akhirnya benar-benar muncul, antara lain;RMI (Remote Method Invocation),CORBA(Common Object Request Broker Architecture), dan SOAP (Simple Object Access Protocol).
SUMBER:





























Monday, March 12, 2012

Pengertian Sistem Terdistribusi Beserta Contoh

SISTEM TERDISTRIBUSI
A. Pengertian Sistem Terdistribusi
Sistem Terdistribusi adalah kumpulan autonomous computers yang terhubung melalui sistem jaringan computer dan dilengkapi dengan system software tedistribusi untuk membentuk fasilitas computer terintegrasi.Sebuah sistem yang komponennya berada pada jaringan komputer. Komponen tersebut saling berkomunikasi dan melakukan koordinasi hanya dengan pengiriman pesan (message passing).

B. Sistem Terdistribusi Procedure

1. RMI (Remote Method Invocation)
Remote Method Invocation (RMI) adalah sebuah teknik pemanggilan method remote yang lebih secara umum lebih baik daripada RPC. RMI menggunakan paradigma pemrograman berorientasi obyek (Object Oriented Programming). RMI memungkinkan kita untuk mengirim obyek sebagai parameter dari remote method. Dengan dibolehkannya program Java memanggil method pada remote obyek, RMI membuat pengguna dapat mengembangkan aplikasi Java yang terdistribusi pada
jaringan.
Cara kerja RMI:
Dalam model ini, sebuah proses memanggil method dari objek yang terletak pada suatu host/computer remote. Dalam paradigma ini, penyedia layanan mendaftarkan dirinya dengan server direktori pada jaringan. Proses yang menginginkan suatu layanan mengontak server direktori saat runtime, jika layanan tersedia, maka referensi ke layanan akan diberikan. Dengan menggunakan referensi ini, proses dapat berinteraksi dengan layanan tsb. Paradigma ini ekstensi penting dari paradigma RPC. Perbedaannya adalah objek yang memberikan layanan didaftarkan (diregister) ke suatu layanan direktori global, sehingga memungkinkan untuk ditemukan dan diakses oleh aplikasi yang meminta layanan tersebut.
Contoh aplikasi untuk meremote pada teknik RMI (Remote Method Invocation)
menggunakan teamviewer untuk meremote computer lain. Teamviewer adalah suatu program yang cukup sederhana dan sangat mudah digunakan untuk beberapa keperluan terutama melakukan akses PC secara remote melalui internet.

2. RPC ( Remote Procedure Call )
RPC adalah suatu protokol yang menyediakan suatu mekanisme komunikasi antar proses yang mengijinkan suatu program untuk berjalan pada suatu komputer tanpa terasa adanya eksekusi kode pada sistem yang jauh ( remote system ).Protokol RPC digunakan untuk membangun aplikasi klien-server yang terdistribusi.
Cara kerja RPC:
Tiap prosedur yang dipanggil dalam RPC, maka proses ini harus berkoneksi dengan server remote dengan mengirimkan semua parameter yang dibutuhkan, menunggu balasan dari server dan melakukan proses kemudian selesai. Proses di atas disebut juga dengan stub pada sisi klien. Sedangkan Stub pada sisi server adalah proses menunggu tiap message yang berisi permintaan mengenai prosedur tertentu.

C. Sistem Terdistribusi SO
Sistem operasi terdistribusi adalah salah satu implementasi dari sistem terdistribusi, di mana sekumpulan komputer dan prosesor yang heterogen terhubung dalam satu jaringan. Koleksi-koleksi dari objek-objek ini secara tertutup bekerja secara bersama-sama untuk melakukan suatu tugas atau pekerjaan tertentu. Tujuan utamanya adalah untuk memberikan hasil secara lebih, terutama dalam:
- file system
- name space
- Waktu pengolahan
- Keamanan
- Akses ke seluruh resources, seperti prosesor, memori, penyimpanan sekunder, dan perangakat keras.
Sistem operasi terdistribusi bertindak sebagai sebuah infrastruktur/rangka dasar untuk network-transparent resource management. Infrastruktur mengatur low-level resources (seperti Processor, memory, network interface dan peripheral device yang lain) untuk menyediakan sebuah platform untuk pembentukan/penyusunan higher-level resources (seperti Spreadsheet, electronic mail messages, windows).
D. Sistem Terdistribusi Hardware

Sistem terdistribusi hardware adalah sistem terdistribusi yang mengkoneksikan hardware. Sebagai contoah yaitu Printer dan Scenner. Satu printer bias digunakan oleh beberapa komputer user yang terkoneksi dengan printer tersebut.

Sunday, March 11, 2012

Bioinformatika

Bioinformatika (bahasa Inggris: bioinformatics) adalah (ilmu yang mempelajari) penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

Membicarakan bioinformatika, tak dapat lepas dari proses lahirnya bidang tersebut. Sebagaimana diketahui, bioteknologi dan teknologi informasi merupakan dua di antara berbagai teknologi penting yang mengalami perkembangan signifikan dalam beberapa tahun terakhir ini. Bioteknologi berakar dari bidang biologi, sedangkan perkembangan teknologi informasi tak dapat dilepaskan dari matematika. Umumnya biologi dan matematika dianggap sebagai dua bidang yang sangat berbeda, dan sulit untuk dipadukan. Tetapi perkembangan ilmu pengetahuan terkini justru menunjukkan sebaliknya. Perpaduan antara biologi dan matematika, menghasilkan embrio suatu cabang pengetahuan baru yang memiliki masa depan yang menjanjikan di abad 21 ini. Embrio itulah yang bernama bioinformatika. Bioinformatika merupakan perpaduan harmonis antara teknologi informasi dan bioteknologi, yang dilatarbelakangi oleh ledakan data (data explosion) observasi biologi sebagai hasil yang dicapai dari kemajuan bioteknologi. Contohnya adalah pertumbuhan pesat database DNA pada GenBank. Genbank adalah database utama dalam biologi molekuler, yang dikelola oleh NCBI (National Center for Biotechnology Information) di AS.
Kemajuan teknik biologi molekuler dalam mengungkap sekuens biologi protein (sejak awal 1950an) dan asam nukleat (sejak 1960an) mengawali perkembangan pangkalan data dan teknik analisis sekuens biologi. Pangkalan data sekuens protein mulai dikembangkan pada tahun 1960an di Amerika Serikat, sementara pangkalan data sekuens DNA dikembangkan pada akhir 1970an di Amerika Serikat dan Jerman pada Laboratorium Biologi Molekuler Eropa (European Molecular Biology Laboratory).
Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang dapat diungkapkan pada 1980an dan 1990an. Hal ini menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, yang meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.
Perkembangan jaringan internet juga mendukung berkembangnya bioinformatika. Pangkalan data bioinformatika yang terhubungkan melalui internet memudahkan ilmuwan dalam mengumpulkan hasil sekuensing ke dalam pangkalan data tersebut serta memperoleh sekuens biologi sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui internet memudahkan ilmuwan dalam mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

sumber: http://anamshahmadani.blogspot.com/2010/11/apa-itu-bioinformatika.html

Apa itu Parallel Processing ?

Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. Tetapi dalam praktek, seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbea-beda tanpa berkaitan di antaranya.

Hubungan Komputasi Modern dengan Parallel Processing
Penggunaan Komputer untuk menyelesaikan suatu permasalahan dalam berbagai bidang sekarang ini banyak dilakukan karena lebih  cepat dibandingkan penyelesaian secara manual. Oleh karena hal tersebut, perlu adanya peningkatan proses komputasi yang dapat ditempuh dengan 2 cara, yaitu:

Peningkatan Kecepatan Hardware : peningkatan kecepatan prosesor komputer dengan menggunakan multiprosesor. Perubahan arsitektur komputer menjadi multiprosesor memang dapat mengerjakan banyak proses dalam 1 waktu, namun tidak dapat mempercapat kinerja proses. Hal ini dapat diatasi dengan peningkatan kecepatan software.

Peningkatan Kecepatan Software : mencari suatu algoritma untuk mempercepat kinerja proses. Algoritma tersebut tidaklah mudah tuk ditemukan, namun berkat adanya komputer multiprosesor, hal tersebut dapat dirancang dengan memparalelkan proses komputasinya.
Komputer multiprosesor masihlah memerlukan biaya yang cukup besar sehingga menyebabkan beberapa algoritma paralel sulit diimplementasikan. Untuk mengatasinya dirancanglah mesin paralel semuMesin paralel semu ini sebenarnya adalah jaringan komputer yang dikendalikan oleh sebuah perangkat lunak yang mampu mengatur pengalokasian proses-proses komputasi kepada processor-processor yang tersebar dalam  jaringan tersebut.

Jadi kesimpulannya, dengan adanya paralel processing mempercepat waktu penyelesaian masalah komputasi karena proses dijalankan secara paralel dg beberapa processor/komputer dengan tujuan/algoritma yang sama. Banyaknya jumlah komputer/prosessor untuk paralel processing, proses komputasi menjadi lebih cepat.

sumber:
http://ghani.gxrg.org/2011/04/01/kinerja-komputasi-dengan-parallel-processing/
http://styaaje.wordpress.com/2011/05/21/kuis-softskill/

Mari Mengenal Apa itu Komputasi Modern ?

Komputasi adalah atau dapat diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma.

Sejarah Komputasi Modern

Pada paruh pertama abad 20, banyak kebutuhan komputasi ilmiah bertemu dengan semakin canggih komputer analog, yang menggunakan mekanis atau listrik langsung model masalah sebagai dasar perhitungan. Namun, ini tidak dapat diprogram dan umumnya tidak memiliki fleksibilitas dan keakuratan komputer digital modern.

George stibitz secara internasional diakui sebagai ayah dari komputer digital modern.
sementara bekerja di laboratorium bel di November 1937, stibitz menciptakan dan membangun sebuah relay berbasis kalkulator ia dijuluki sebagai “model k” (untuk “meja dapur”, di mana dia telah berkumpul itu), yang adalah orang pertama yang menggunakan sirkuit biner untuk melakukan operasi aritmatika. Kemudian model menambahkan kecanggihan yang lebih besar termasuk aritmatika
dan kemampuan pemrograman kompleks.

Salah satu tokoh yang sangat mempengaruhi perkembangan komputasi modern adalah John von Neumann (1903-1957), Beliau adalah ilmuan yang meletakkan dasar-dasar komputer modern. Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann memberikan berbagai sumbangsih dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer yang di salurkan melalui karya-karyanya . Beliau juga merupakan salah satu ilmuwan yang terkait dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.

John Von Neumann

Von Neumann dilahirkan di Budapest, ibu kota Hungaria, pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit. Di sana, nama keluarga diletakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann dan Margaret Kann. Max Neumann memperoleh gelar dan namanya berubah menjadi Von Neumann. Max Neumann adalah seorang Yahudi Hungaria yang bergelar doktor dalam ilmu hukum. Dia juga seorang pengacara untuk sebuah bank. Pada tahun 1903, Budapest terkenal sebagai tempat lahirnya para manusia genius dari bidang sains, penulis, seniman dan musisi.

Di tahun 1926 pada umur 22 tahun, Von Neuman lulus dengan dua gelar yaitu gelar S1 pada bidang teknik kimia dari ETH dan gelar doktor (Ph.D) pada bidang matematika dari Universitas Budapest.

Von Neumann sangat tertarik pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Von Neumann menjadi seorang konsultan pada pengembangan komputer ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah seperangkat komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.

Berikut ini beberapa contoh komputasi modern sampai dengan lahirnya ENIAC :
Konrad Zuse’s electromechanical “Z mesin”.Z3 (1941) sebuah mesin pertama menampilkan biner aritmatika, termasuk aritmatika floating point dan ukuran programmability. Pada tahun 1998, Z3 operasional pertama di dunia komputer itu di anggap sebagai Turing lengkap.
 
Berikutnya Non-programmable Atanasoff-Berry Computer yang di temukan pada tahun 1941 alat ini menggunakan tabung hampa berdasarkan perhitungan, angka biner, dan regeneratif memori kapasitor.Penggunaan memori regeneratif diperbolehkan untuk menjadi jauh lebih seragam (berukuran meja besar atau meja kerja).
 
Selanjutnya komputer Colossus ditemukan pada tahun 1943, berkemampuan untuk membatasi kemampuan program pada alat ini menunjukkan bahwa perangkat menggunakan ribuan tabung dapat digunakan lebih baik dan elektronik reprogrammable.Komputer ini digunakan untuk memecahkan kode perang Jerman.
 
The Harvard Mark I ditemukan pada 1944, mempunyai skala besar, merupakan komputer elektromekanis dengan programmability terbatas.
 
Lalu lahirlah US Army’s Ballistic Research Laboratory ENIAC ditemukan pada tahun 1946, komputer ini digunakan unutk menghitung desimal aritmatika dan biasanya disebut sebagai tujuan umum pertama komputer elektronik (ENIAC merupaka generasi yang sudah sangat berkembang di zamannya sejak komputer pertama Konrad Zuse ’s Z3 yang ditemukan padatahun 1941).

Secara kasar, kita dapat membagi sejarah komputasi modern ke dalam era berikut:
- 1970-an: Timesharing (1 komputer dengan banyak pengguna)
- 1980-an: Personal komputer (1 komputer per user)
- 1990-an: Komputasi paralel (banyak komputer per user)
Sampai sekitar tahun 1980, komputer besar, mahal, dan terletak di pusat-pusat komputer.
Kebanyakan organisasi memiliki satu mesin besar.

Tahun 1980-an, harga turun ke titik di mana setiap user bisa memiliki-nya komputer pribadi atau workstation. Mesin-mesin ini sering jaringan bersama-sama, sehingga pengguna dapat melakukan remote login pada komputer orang lain atau berbagi file dalam berbagai cara.
Dewasa ini beberapa sistem memiliki banyak prosesor per pengguna, baik dalam bentuk komputer paralel atau koleksi besar CPU yang dibagi oleh komunitas pengguna yang kecil. Seperti biasanya disebut sistem p a r a l l e l atau terdistribusi sistem komputer.

Perkembangan ini menimbulkan pertanyaan tentang jenis perangkat lunak apa yang akan dibutuhkan untuk sistem baru ini. Untuk menjawab pertanyaan ini, sebuah kelompok di bawah arahan Prof Andrew S. Tanenbaum pada Vrije Universiteit (VU) di Amsterdam (Belanda) telah melakukan penelitian sejak tahun 1980 di bidang sistem komputer terdistribusi.

JENIS-JENIS KOMPUTASI MODERN

Sebelumnya jenis -jenis komputasi modern terbagi tiga macam, yaitu komputasi mobile (bergerak), komputasi grid, dan komputasi cloud (awan). Penjelasan lebih lanjut dari jenis-jenis komputasi modern sebagai berikut :
1. Mobile computing
Mobile computing atau komputasi bergerak memiliki beberapa penjelasan, salah satunya komputasi bergerak merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel dan mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel.
Dan berdasarkan penjelasan tersebut, untuk kemajuan teknologi ke arah yang lebih dinamis membutuhkan perubahan dari sisi manusia maupun alat. Dan dapat dilihat contoh dari perangkat komputasi bergerak seperti GPS, juga tipe dari komputasi bergerak seperti smart phone, dan lain sebagainya.
2. Grid computing
Komputasi grid menggunakan komputer yang terpisah oleh geografis, didistibusikan dan terhubung oleh jaringan untuk menyelasaikan masalah komputasi skala besar.
Ada beberapa daftar yang dapat dugunakan untuk mengenali sistem komputasi grid, adalah :
  • Sistem untuk koordinat sumber daya komputasi tidak dibawah kendali pusat.
  • Sistem menggunakan standard dan protocol yang terbuka.
  • Sistem mencoba mencapai kualitas pelayanan yang canggih, yang lebih baik diatas kualitas komponen individu pelayanan komputasi grid.
3. Cloud computing
Komputasi cloud merupakan gaya komputasi yang terukur dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.
Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.
 
DAMPAK ADANYA KOMPUTASI MODERN
Dampak dari adanya komputasi modern adalah dapat membantu manusia untuk menyelesaikan masalah-masalah yang kompleks dengan menggunakan komputer. Salah satu contohnya adalah biometric. Biometric berasal dari kata Bio dan Metric. Kata bio diambil dari bahasa yunani kuno yang berarti Hidup sedangkan Metric juga berasal dari bahasa yunani kuno yang berarti ukuran, jadi jika disimpulkan biometric berarti pengukuran hidup.
Tapi secara garis besar biometric merupakan pengukuran dari statistic analisa data biologi yang mengacu pada teknologi untuk menganalisa karakteristik suatu tubuh (individu). Dari penjelasan tersebut sudah jelas bahwa Biometric menggambarkan pendeteksian dan pengklasifikasian dari atribut fisik.
Sumber:
http://id.wikipedia.org/wiki/Komputasi
http://id.wikipedia.org/wiki/Teknologi_komputasi
http://www.komputasi.lipi.go.id/utama.cgi?cetakartikel&1111718762
http://id.wikipedia.org/wiki/Komputasi_grid
http://id.wikipedia.org/wiki/Cloud_computing